Curriculum Map Year 12 Chemistry

Topic Name	Term	Skills developed with link to NC Subject content	Reflection on previous link in the curriculum	Pr cu
Atomic Structure	Autumn HT1	 Fundamental Particles Mass Numbers and Isotopes TOF Mass Spectrometry Electronic Configuration First and Second Ionisation Energy 	GCSE AQA 4.1.1 A simple model of the atom, symbols, relative atomic mass, electronic charge and isotopes 4.1.1.7 Electronic structure	Th co dif lev the rat op 13
Organic Nomenclature, Alkanes, Halogenoalkanes	Autumn HT1	 Nomenclature Representing organic compounds: empirical formula general formula structural formula skeletal formula displayed formula molecular formula Isomerism Fractional distillation of crude oil Cracking Combustion of Alkanes Chlorination of Alkanes Nucleophilic substitution Elimination Ozone depletion 	GCSE AQA 4.7.1.1 Crude oil, hydrocarbons and alkanes 4.7.1.2 Fractional distillation and petrochemicals 4.7.1.3 Properties of hydrocarbons 4.7.1.4 Cracking and alkenes	A I 3.3 3.3 3.3 3.3
Amount of Substance	Autumn HT2	 Relative atomic mass and Relative molecular mass The mole and Avogadro constant Ideal Gas Equation Empirical and molecular formula Balanced Equations and associated Calculations: Percentage Atom Economy Calculating mass Calculating concentration and volume of solutions 	GCSE AQA 4.3.1 Chemical measurements, conservation of mass and the quantitative interpretation of chemical equations 4.3.2 Use of amount of substance in relation to masses of pure substances 4.3.3 Yield and atom economy of chemical reactions (chemistry only) 4.3.4 Using concentrations of solutions in mol/dm3 (chemistry only) 4.3.5 Use of amount of substance in relation to volumes of gases	A I 3.2 Tit 3.1
Alkenes and Alcohols and organic Analysis	Autumn HT2	 Structure, bonding and reactivity of alkenes Addition reactions to alkenes Addition polymers Alcohol production and classification Oxidation of alcohols Elimination of an alcohol 	GCSE AQA 4.7.1.4 Cracking and alkenes 4.7.2 Reactions of alkenes and alcohols (chemistry only) 4.7.2.3 Alcohols 4.7.2.4 Carboxylic acids	A 3.3 3.3 3.3 3.3

Progress to future link in the curriculum

The taught content does not get any more complex than this. However, there is a difference in the level of challenge from AS level to A level examination questions. It is therefore aptitude for answering questions rather than subject knowledge that has the opportunity to develop in this topic in year 13.

A Level AQA

3.3.10 Aromatic Chemistry
3.3.12 Polymers
3.3.11 Amines
3.3.9 Carboxylic acids and derivatives
3.3.14 Organic Synthesis

A Level AQA 3.2.5.5 Variable oxidation states and Redox Titration Calculations 3.1.12 Acids and Bases

A Level AQA

- 3.3.10 Aromatic Chemistry
- 3.3.12 Polymers
- 3.3.11 Amines
- 3.3.9 Carboxylic acids and derivatives
- 3.3.14 Organic Synthesis

				Τ
Bonding	Spring HT3	 Ionic bonding The nature of covalent and dative bonding Metallic bonding Bonding and physical properties: Ionic Metallic Metallic Macromolecular Molecular Shapes of simple molecules and ions Bond Polarity and Intermolecular forces 	GCSE AQA 4.2 Bonding, structure, and the properties of matter 4.2.1 Chemical bonds, ionic, covalent and metallic 4.2.2 How bonding and structure are related to the properties of substances 4.2.3 Structure and bonding of carbon	A I 3.1 3.2 3.2 me
Periodicity, Group 2 and Group 7 and Redox	Spring HT3	 Classification of an element based on it's position in the periodic table Physical properties of period 3 elements Atomic radii First and second ionisation energy Melting point Explain physical properties of group 2 elements The reactions of the elements Mg–Ba with water. Uses, reactions and solubility of group 2 elements and compounds Trends in properties of halogens and halide ions Uses of chlorate ions and chlorine 	GCSE AQA 4.4.1.4 Oxidation and reduction in terms of electrons (HT only) 4.1.2.5 Group 1 4.1.2.6 Group 7	A I 3.2 the 3.2
Energetics	Spring HT4	 Enthalpy Change Calorimetry Applications of Hess's Law Bond Enthalpies 	GCSE AQA 4.5 Energy changes 4.5.1 Exothermic and endothermic reactions 4.5.1.2 Reaction profiles 4.5.1.3 The energy change of reactions (HT only)	A I 3.1
Chemical Analysis	Spring HT4	 Test tube Reactions to identify functional group Infrared spectroscopy Mass Spectroscopy Chromatography Introduce NMR 	GCSE AQA 4.8 Chemical analysis 4.8.1 Purity, formulations and chromatography 4.8.2 Identification of common gases 4.8.3 Identification of ions by chemical and spectroscopic means (chemistry only) 4.8.3.6 Instrumental methods 4.8.3.7 Flame emission spectroscopy	A L 3.3 spe 3.3 TO Kin
Kinetics and Equilibria	Summer HT5	 Collision Theory Maxwell - Boltzmann distribution Effect of temperature on reaction rate Effect of concentration and pressure Catalysts Chemical Equilibria and Le Chatelier's principle Kc for homogeneous systems 	GCSE AQA4.6.1 Rate of reaction4.6.1.1 Calculating rates of reactions4.6.1.2 Factors which affect the rates ofchemical reactions4.6.1.3 Collision theory and activationenergy4.6.1.4 Catalysts4.6.2 Reversible reactions and dynamicequilibrium	A L 3.1 3.2

A Level AQA 3.1.8.1 Born Haber Cycles 3.2.5.3 Shapes of Complex Ions 3.2.5.1 General properties of transition metals (complex formation)

A Level AQA

3.2.4 Properties of Period 3 elements and their oxides (A-level only) 3.2.5 Transition metals

A Level AQA 3.1.8 Thermodynamics

A Level

3.3.15 Nuclear magnetic resonance spectroscopy

- 1H
- 13C
- 3.3.16 Chromatography

TOF calculations using the equation for Kinetic Energy

A Level AQA 3.1.9 Rate Equations 3.2.6 Reactions of aqueous ions in solution

Optical Isomerism and Reactions of Aldehydes and Ketones	Summer HT5	 Optical isomers and optical activity Optically active drugs Reactions of aldehydes and ketones to form alcohols and hydroxynitriles via nucleophilic addition Equations Mechanisms Optical activity in the products of nucleophilic substitution or the lack of. 	GCSE AQA 4.7.2.3 Alcohols 4.4.1.4 Oxidation and reduction in terms of electrons (HT only)	A L 3.3 3.3 3.3 3.3 3.3
Preparation for End of Year Exams	Summer HT6	Covers all of the above topics and a range of different skills using past exam questions in order to improve exam technique	Building on GCSE assessment technique https://www.aqa.org.uk/subjects/science/g cse/chemistry-8462/assessment-resources	Pro par par
Preparation for End of Year Exams	Summer HT6	Covers all of the above topics and a range of different skills using past exam questions in order to improve exam technique	Building on GCSE assessment technique https://www.aqa.org.uk/subjects/science/g cse/chemistry-8462/assessment-resources	Prc par par

A Level AQA 3.3.10 Aromatic Chemistry 3.3.12 Polymers 3.3.11 Amines 3.3.9 Carboxylic acids and derivatives 3.3.9 Carboxylic acids and derivatives 3.3.14 Organic Synthesis Progression from AS Level demand past paper questions to A Level demand past paper questions

Progression from AS Level demand past paper questions to A Level demand past paper questions