
Curriculum Map Year 13 GCSE COMPUTER SCIENCE
Topic Name Term Skills developed with link to NC Subject content Reflection on previous link in the

curriculum

Progress to future link in the

curriculum

Boolean algebra

Autumn
HT1

• Construct a truth table for a variety of logic gates
• Be familiar with drawing and interpreting logic gate circuit

diagrams involving multiple gates
• Complete a truth table for a given logic gate circuit
• Write a Boolean expression for a given logic gate circuit
• Draw an equivalent logic gate circuit for a given Boolean

expression
• Be familiar with the use of Boolean identities and De Morgan’s

laws to manipulate and simplify Boolean expressions
• Write a Boolean expression for a given logic gate circuit, and vice

versa
• Understand the correspondence between a truth table and a

Karnaugh map
• Understand how to fill out a Karnaugh map for a given expression
• Understand how to group items in a Karnaugh map
• Interpret the groupings in a Karnaugh map
• Simplify Boolean expressions with two, three or four variables

using a Karnaugh map
• Recognise and trace the logic of the circuits of a half adder and a

full adder
• Construct the circuit for a half adder
• Understand the logic associated with D type flip flops
• apply their knowledge in answers to a range of questions
• be able to highlight areas of strength and any gaps in their

understanding of computers

Year 11: Boolean logic Examinations and revision
Year 13: Computational thinking
Year 13: Algorithms

Computational thinking

Autumn
HT1

• Understand the nature of and need for abstraction
• Describe the differences between an abstraction and reality
• Devise an abstract model for a variety of situations
• Identify the inputs and outputs for a given situation
• Determine the preconditions for devising a solution to a problem
• Understand the need for reusable program components
• Understand the nature, benefits and drawbacks of caching
• Identify the components of a problem
• Identify the components of a solution to a problem
• Determine the order of the steps needed to solve a problem
• Identify sub-procedures necessary to solve a problem
• Identify the points where a decision has to be taken
• Determine the logical conditions that affect the outcome of a

decision
• Determine how decisions affect program flow
• Determine which parts of a program can be tackled at the same

time
• Determine the benefits and trade-offs that might result from

concurrent processing in a particular situation
• Explore different strategies for problem-solving
• Understand the concept and application of the “divide and

conquer” approach
• Describe features that make a problem solvable by computational

methods

Year 12: Data structures
Year 13: Boolean algebra

Year 13: Algorithms
Year 13: NEA Design, implantation,
evaluation
Year 13: Programming techniques

• Learn about and apply

• backtracking

• data mining

• heuristics

• performance modelling

• pipelining

• visualisation to solve problems

NEA: Design Autumn
HT1

• Decompose the problem (a) Break down the problem into smaller
parts suitable for computational solutions justifying any decisions
made.

• Describe the solution (a) Explain and justify the structure of the
solution. (b) Describe the parts of the solution using algorithms
justifying how these algorithms form a complete solution to the
problem. (c) Describe usability features to be included in the
solution. (d) Identify key variables / data structures / classes
justifying choices and any necessary validation.

• Describe the approach to testing (a) Identify the test data to be
used during the iterative development and post development
phases and justify the choice of this test data.

Year 12: Software development
Year 12: programming
Year 12: NEA Analysis
Year 13: Computational thinking

Year 13: NEA Implementation

Legal, moral, ethical and
cultural issues

Autumn
HT2

• To be aware of computing related legislation, including:
• The Data Protection Act 1998
• The Computer Misuse Act 1990
• The Copyright Design and Patents Act 1988
• The Regulation of Investigatory Powers Act 2000
• To understand that developments in digital technologies have

enabled massive transformations in the capacity of organisations
to monitor behaviour, amass and analyse personal information

• Discuss the individual (moral), social (ethical) and cultural
opportunities and risks of digital technology, including:

• computers in the workforce
• automated decision making
• artificial intelligence
• analysis of personal information
• Discuss the environmental effects of computers
• Discuss the cultural opportunities and risks of digital technology

relating to:
• censorship and the Internet
• the monitoring of behaviour
• piracy and offensive communications
• layout, colour paradigms and character sets

Year 10: Ethical, legal and environmental
impacts

Examinations and revision

Programming techniques Autumn
HT2 and

Spring HT3

• Be familiar with the use of an IDE to develop and debug a program
• Define what is meant by an algorithm and pseudocode
• Learn how and when different data types are used
• Learn the basic arithmetic operations available in a typical

programming language
• Write pseudocode solutions to simple problems
• Use relational operators
• Use Boolean operations AND, OR, NOT
• Use the switch/case statement for selection
• Use nested selection statements
• Understand and use three different types of iterative statement:

o while … endwhile

Year 11: Python programming examination
work
Year 11: Relational databases and SQL
Year 12: Software development
Year 12: Data types
Year 12: Data structures
Year 12: programming
Year 13: Computational thinking

Examinations and revision
Year 13: Algorithms

o do (or repeat) … until

o for … next
• Be familiar with subroutines, their uses and advantages
• Use subroutines that return values to the calling routine
• Use arguments/parameters to pass data to subroutines by value

and by reference
• Contrast the use of local and global variables
• Use recursion to solve simple problems
• Trace a recursive algorithm
• Compare recursion to an iterative approach
• Describe the features of an object oriented language:
• classes, objects, methods, attributes, inheritance, encapsulation

and polymorphism
• Write pseudocode for a class definition
• Write pseudocode to instantiate an object and use its methods
• Draw inheritance diagrams
• Describe the advantages of an object oriented approach to

programming

NEA: Development Autumn
HT2 and

Spring HT3

• Iterative development process (a) Provide annotated evidence of
each stage of the iterative development process justifying any
decision made. (b) Provide annotated evidence of prototype
solutions justifying any decision made.

• Testing to inform development (a) Provide annotated evidence for
testing at each stage justifying the reason for the test. (b) Provide
annotated evidence of any remedial actions taken justifying the
decision made.

Year 12: Software development
Year 12: programming
Year 13: NEA Analysis, design

Year 13: NEA design, implementation
Examinations and revision

Algorithms

Spring
HT4

• Analyse the suitability of different algorithms for a given task and
data set

• Be familiar with measures and methods to determine the
efficiency of different algorithms

• Define constant, linear, polynomial, exponential and logarithmic
functions

• Use Big-O notation to compare the time complexity of algorithms
• Be able to derive the time complexity of an algorithm
• Write and trace algorithms for linear search and binary search
• Analyse the time complexity of the linear search and binary search

algorithms
• Describe and trace the binary tree search algorithm
• Be able to describe the bubble sort and insertion sort algorithms
• Be able to trace the bubble sort and insertion sort algorithms
• Understand and be able to trace the merge sort and quick sort

algorithms
• Be able to trace depth-first and breadth-first algorithms
• Describe typical applications of each
• Understand and be able to trace Dijkstra’s shortest path algorithm
• Be aware of applications of the shortest path algorithm
• Describe the A* algorithm

Year 11: Python programming examination
work
Year 11: Algorithms
Year 11: Boolean logic
Year 12: Software development
Year 12 Data types
Year 12: Data structures
Year 12: programming
Year 13: Programming techniques

Examinations and revision

NEA: Evaluation Spring HT4 • Testing to inform evaluation (a) Provide annotated evidence of
testing the solution of robustness at the end of the development
process. (b) Provide annotated evidence of usability testing (user
feedback).

Year 11: Algorithms
Year 12: Data types
Year 12: Software development
Year 12: programming
Year 13: Analysis, design, implementation

• Success of the solution (a) Use the test evidence from the
development and post development process to evaluate the
solution against the success criteria from the analysis.

• Describe the final product (a) Provide annotated evidence of the
usability features from the design, commenting on their
effectiveness.

• Maintenance and development (a) Discuss the maintainability of
the solution. (b) Discuss potential further development of the
solution.

